

Catalysis Today 39 (1997) 169-175

Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution

Hiroshi Yoneyama¹

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565, Japan

Abstract

The results published so far show that semiconductor nanoparticles (Q-Sc) possess high activities as photocatalysts for reduction of CO₂ as compared with the corresponding bulk semiconductor photocatalysts. Several factors which influence photoreduction behaviors of carbon dioxide on size-quantized semiconductor nanoparticles (Q-Sc) in solution systems are described, which include the size of the Q-Sc, the charged condition of stabilizers used for Q-Sc, and the polarity of solvents used in photoreduction studies of CO₂. © 1997 Elsevier Science B.V.

Keywords: Semiconductor nanoparticles; Photocatalysts; CO2 reduction

1. Introduction

Photoinduced reduction of CO₂ on semiconductor photocatalysts in solution systems, which are usually coupled with oxidation of water, are among the most desired reactions of chemical conversion and storage of solar energy into chemical energy. Attempts to achieve this were made in the 1980s using bulk semiconductor particles of high stability in aqueous solutions such as TiO2, SrTiO3, and SiC. However, efficient reduction of CO₂ was not achieved in those cases. Table 1 gives several results on photoreduction of CO₂ using bulk semiconductor photocatalysts. It can be seen that more than two kinds of reduction products were obtained in many cases. Although not shown in the table, the amount of products obtained were usually too small to allow reliable analysis results and for this reason, it is not always easy to reproduce the reported results.

The use of sacrificial electron donors which have high activities for donating electrons to irradiated semiconductor photocatalysts, such as trimethylamine and triethanolamine, slightly improved the situation. It allows the use of semiconductor particles of low electrochemical stability such as ZnS and CdS as the photocatalysts besides the semiconductors of high electrochemical stability. The sacrificial electron donors can pick up quickly photogenerated positive holes from the semiconductor photocatalysts and can prevent the photodissolution of the photocatalysts. Furthermore, the photoreduction rate of CO₂ seems to have been enhanced by the use of the sacrificial electron donors, suggesting that if no sacrificial electron donors are used, oxidation of water by photogenerated positive holes determines the rate of CO₂ photoreduction on bulk semiconductor photocatalysts. Unfortunately, however, few articles have been published on photoreduction of CO₂ using bulk semiconductor photocatalysts in the presence of sacrificial electron donors.

¹Fax: 81 6 877 6802.

Table 1
Photoreduction of CO₂ using bulk semiconductor photocatalysts in aqueous solutions

Semiconductor/Loaded catalyst	yst Sacrificial electron donor Products		Reference
SiC, GaP, TiO ₂ , etc.		НСНО, СН₃ОН	[1]
SrTiO ₃ , WO ₃ , TiO ₂ , etc.		HCHO, CH₃OH, CH₄	[2]
SrTiO ₃ / Oxides of Rh, Pt, Ir		HCOO ⁻ , (HCHO, CH ₃ OH, CH ₃ CHO, C ₂ H ₅ OH) ^a	[3]
BaTiO ₃ , LiNbO ₃		СН₃СНО, НСООН, НСНО	[4]
TiO ₂ /RuO ₂		НСООН, СН₃ОН, НСНО	[5]
TiO ₂ /Cu		CH_4 , C_2H_6	[6]
TiO ₂ /RuO ₂ /Ru ^b		CH₄	[7]
TiO ₂ /Rh		НСООН, НСНО, СН₃ОН	[8]
TiO ₂ /Pd		НСООН	[9]
TiO ₂ /Pt		НСНО	[10]
TiO2, SrTiO3/Pt, Rh, Ru, Ag		CO, CH ₄ , HCOOH	[11]
TiO ₂ /Suspended Cu ^c	(Supercritical CO ₂)	НСООН, СН₃ОН	[12]
CaFe ₂ O ₄		CH₃OH, HCHO	[13]
$Cu_2O_xH_2O$		СН₃ОН, НСНО	[14]
ZnS	2,5-dihydrofran	НСООН	[15]
CdS	TEACI ^d	Glyoxylic acid, acetic acid,	[16]
		HCOOH, CH₃OH, CH₃CHO	
CdS	EDTA,TEOA ^e	НСООН, НСНО	[17]

^a Products given in the parenthesis are minor products.

Recently photochemistry of Q-Sc is emerging, and it was revealed that Q-Sc has in general higher activities as photocatalysts than the corresponding bulk semiconductors for several heterogeneous reactions including photoreduction of CO₂. In the following, recent results on CO₂ photoreduction using Q-Sc photocatalysts is described.

2. Effects of the size of Q-Sc on the rate of photoreduction of CO₂

The first report on the use of Q-Sc as a photocatalyst for reduction of CO₂ was published in 1984 by the Henglein group [18]. They reported that CO₂ was photoreduced to formate on Q-ZnS in the presence of 2-propanol with the quantum efficiency of 80%, which had never been reported by that time for photoinduced reactions on semiconductor photocatalysts. Reexamination of the photocatalytic reduction of CO₂ under almost the same experimental conditions as those reported by the Henglein group revealed that Q-ZnS has certainly high activities for CO₂ photo-

reduction to formate [19], but the quantum efficiency obtained for the formate production was not 80% but 23%. Almost the same quantum efficiency was reported by Yanagida and coworkers who used Q-ZnS as the photocatalyst in the presence of $H_2PO_4^-$ and SH⁻ [20]. Interestingly, it was found that the quantum efficiency for the formate production was influenced by the bandgap of O-ZnS. O-ZnS having different bandgap values were prepared by changing the molar ratio of Zn(ClO₄)₂ to Na₂S used in the preparation of Q-ZnS, and it was found that the greater the molar ratio, the smaller the particles or the greater the bandgap. The bandgap (E_g) was determined by applying the absorbance of the spectra of ZnS colloids in its onset region to Eq. (1), and the particle size of the Q-ZnS was determined by applying the obtained bandgap to Eq. (2), which was derived by Brus [21]. So far several theoretical approaches have been published concerning the relations between the particle sizes of Q-Sc and the bandgap values [21–24].

$$\alpha h \nu = A (h \nu - E_{\rm g})^{1/2} \tag{1}$$

$$E_{\rm g} = E + 2\hbar^2 \pi^2 / d^2 (1/m_{\rm e}^* + 1/m_{\rm h}^*) - 3.6e^2 / \epsilon d,$$
 (2)

^b The experiments were carried out in gaseous atmosphere containing H₂ and CO₂.

^c Copper powder was suspended in solution together with TiO₂.

^d Tetraethylammonium chloride.

e Triethanol amine.

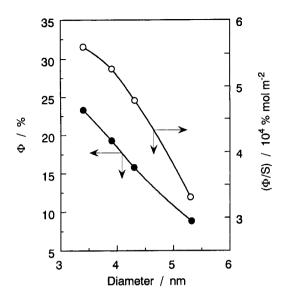


Fig. 1. The quantum efficiency (Φ) for formate production and the efficiency divided by the total surface area of the photocatalyst (Φ/S) as a function of the size of the photocatalyst. Irradiation of CO₂-saturated aqueous solution (pH 7) containing 1 mol dm⁻³ 2-propanol and 4×10^{-4} mol dm⁻³ Q-ZnS with a 500 W high pressure mercury arc lamp for 60 min.

where α is the absorbance, ν is the wave number, $m_{\rm e}$ and $m_{\rm h}$ are the effective mass of an electron and a hole, ϵ and E the dielectric constant of ZnS and the bulk bandgap energy, respectively. Fig. 1 shows the quantum efficiency obtained for the formate production from CO₂ as a function of the particle size of the Q-ZnS photocatalyst. According to the results shown in this figure, the quantum efficiency became high with decreasing the particle size of the photocatalyst.

The following factors may be conceivable as the principal causes for the particle size dependence of the quantum efficiency observed here: (I) Since the bandgap becomes large with decreasing the size of the particle, both the oxidizing power and reducing power of the photocatalyst becomes great with decreasing the size of the photocatalyst. (2) With decreasing the particle size, the total surface area of the photocatalysts per weight unit increases, and (3) the affinity of adsorbing CO₂ onto photocatalyst surfaces seems to become high with decreasing particle size, as judged from the finding that the tendency of agglomeration of Q-Sc becomes larger with decreasing the particle size. The factor which is the most likely among these three

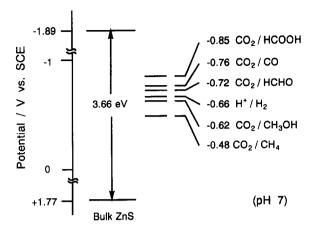


Fig. 2. Energetic correlation of bulk ZnS and reduction reactions of CO₂ to several kinds of products in aqueous solutions at pH 7.

is then a matter for discussion. Let the first factor be discussed first. Fig. 2 shows the energy diagram of the bulk ZnS [25] relative to several reduction reactions of CO₂ in aqueous solutions at pH 7. It is seen that the bottom of the conduction band of ZnS is more than 1 V more negative than the reduction reaction of CO₂ to formate. This potential difference is regarded as the driving force of the reduction reaction, and is said to be large enough to induce most of electrochemical reduction reactions. Accordingly, it is said that the bulk ZnS has a high reduction power. Since the bandgap of O-Sc which showed the largest blue shifts in the onset of the absorption spectra was 4.1 eV at most, while that of the bulk ZnS is 3.8 eV, we do not expect to have a large contribution of the size quantization to the increase in the potential difference between the conduction band of Q-Sc and the reduction reaction of CO₂ to formate. Furthermore, the bulk ZnS photocatalyst prepared with the same technique used for the preparation of Q-ZnS but without using SiO₂ as the stabilizer did not show any remarkable activities for reduction of CO₂. Considering these, the first factor does not play an important role in the apparent increase of photocatalytic activities with decreasing the particle size. In order to get information on the contribution of the second factor, the quantum efficiency was divided by the surface area of the particles, and the obtained values are plotted as a function of the particle size of photocatalyst. The results are also included in Fig. 2. It is evident that the increase in the photocatalytic activities of Q-ZnS with decreasing the particle size was more than the increase in the surface area [19], suggesting that the increase of the surface area alone cannot explain well the apparent increase in the photocatalytic activities observed. Accordingly it is concluded that the third factor is involved in the apparent enhancement of the photocatalytic activities with decreasing the particle size.

It is well established in a variety of photocatalytic reactions using bulk semiconductor photocatalysts that loading of electrocatalysts onto the semiconductor photocatalyst surfaces is useful as a means for enhancing the activities of photocatalysts. The same was found to be true for Q-Sc photocatalysts. The loading of Cd in 0.025 mol% onto Q-ZnS with use of the photodeposition technique resulted in the enhancement of the quantum efficiency for reduction of CO₂ to formate from 16% to 32% [27].

The increase in the apparent photocatalytic activities with decreasing the particle size of the photocatalyst was also observed at Q-TiO₂ prepared in silica matrix using the sol–gel technique, which is denoted here as Q-TiO₂/SiO₂ [26]. It was found that the Q-TiO₂/SiO₂ having the greater bandgap or the smaller particle size was prepared by using the smaller molar ratio of Ti(OEt)₄ to Si(OEt)₄ in the preparation of the sol. As shown in Table 2, CO₂ was mostly reduced to formate at the Q-TiO₂/SiO₂ in an aqueous solution containing 1 mol dm⁻³ 2-propanol as a sacrificial electron donor.

Table 2 Quantum efficiency at 280 nm for production of reduction products of CO₂ at Q-TiO₂/SiO₂ in the presence of 2-propanol

Ti/Si ratio	E_{g} (eV)	Quantum efficiency (%)			
		HCOO-	CH₄	C ₂ H ₄	
0.10	4.0	9.0	0.50	0.1	
0.048	4.1	12.7	1.5	1.8	
0.0027	4.33	14.2	3.4	2.3	

3. Effect of charged condition of stabilizers for Q-Sc on reduction behaviors of CO₂

Q-Sc was prepared by mixing the same volume of 6×10^{-4} mol dm⁻³ Cd(ClO₄)₂ and 4×10^{-4} mol dm⁻³ in the presence of various kinds of polymers as the stabilizing agents. The amount of the polymers used was such that as to give the concentration of 8×10^{-4} mol dm⁻³ in the monomer unit. The bandgap of the prepared Q-CdS was determined by applying the absorption spectra to the relation given by Eq. (1). The results obtained in the photoreduction of CO₂ are shown in Table 3 [28], which suggests that the stabilizing agents having negative charges favor the photoreduction of CO₂ to formate, while the CO production occurs more easily with use of positively charged stabilizers. Also suggested from comparison of the irradiation time shown in Table 3 for the CO production and for the formate production with each other is that the rate of formate production is higher than that

Table 3
Results of photoreduction of CO₂ using Q-CdS in the presence of a variety of polymers as the stabilizing agents^a

Stabilizer	Quantity of charge ^b	E _g ^c (eV)	Irradiation time (h)	Products (µmol)		
	(mol dm^{-3})			HCOO-	СО	H ₂
Poly(sodium vinylsulfonate)	Negative 7.8×10 ⁻⁴	2.68	4	0.73	0	0.090
Poly(sodium 4-styrenesulfonate)	Negative 8×10 ⁻⁴	2.66	4	0.88	0	0.046
Polyacrylic acid	Negative 2.4×10^{-4}	2.80	3	1.77	0	0.59
Poly(allylamine hydrochloride)	Positive 8×10^{-4}	2.80	16	0	0.75	0
Polybrene	Positive 8×10^{-4}	2.71	9	0	0.11	0
Polyethyleneimine	Positive 4×10^{-4}	2.85	6	0	0.40	0

^a Experiments were carried out using $4 \, \mathrm{cm}^3$ of $4 \times 10^{-4} \, \mathrm{M}$ Q-CdS in the presence of $8 \times 10^{-3} \, \mathrm{M}$ stabilizer in the monomer unit, $1 \, \mathrm{M}$ 2-propanol, $2 \times 10^{-4} \, \mathrm{M}$ Cd²⁺ and saturated amount of CO₂. Solution pH was 5.5. Irradiation was carried out using a 500 W xenon lamp as a light source at 0.51 W cm⁻² and lights of the wavelengths shorter than 310 nm was cut off.

b The quantity of charges of the polymers in the photoreduction experiments of CO₂.

^c The bandgap value of Q-CdS prepared in the presence of the stabilizer.

of CO. Apparently the charged conditions of the stabilizers influence the reduction behaviors of CO₂. One plausible explanation of the role of the charged condition of the stabilizers in the photoreduction of CO₂ may be like this. The reduction of CO₂ occurs with adsorption on the photocatalyst surfaces. When a reduction intermediate such as CO₂ is produced, its adsorption on the photocatalyst surfaces will be influenced by the charged conditions of the stabilizers. If there is a negatively charged stabilizer on the Q-CdS surfaces, the adsorption of CO₂ onto the photocatalyst surface may occur through the carbon atom, while if a positively charged stabilizer is present, both carbon and an oxygen of CO₂ may be involved in its adsorption.

4. Effect of polarity of solvents used in photoreduction of CO₂

The solvents used in photoreduction studies of CO₂ seem to have some effect on the reduction behaviors of CO₂, as shown in Fig. 3 for the use of the Q-TiO₂/SiO₂

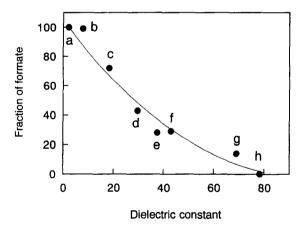


Fig. 3. Influence of the dielectric constant of solvents used in photoreduction studies of CO_2 on the fraction of formate of the total reduction products which consisted of formate and CO. The experiments were carried out by irradiating a Q-TiO₂-immobilized silica film of 2 cm² in 5 ml of various kinds of solutions containing 1 M 2-propanol as the sacrificial electron donor. The photocatalyst film was prepared by using the sol–gel technique, and 7 μ mol TiO₂ was contained in 70 μ mol SiO₂ film. Solvents used: a: Carbon tetrachloride, b: Dichloromethane, c: 2-Propanol, d: Ethylene glycol monoethyl ether, e: Acetonitrile, f: Sulfolane, g: Propylene carbonate, and h: Water.

as the photocatalyst. The ordinate of the figure gives the fraction of formate as a reduction product to the sum of the products which consisted of formate and CO. The experiments were carried out using 1 mol dm⁻³ 2-propanol as the sacrificial electron donor and no water was intentionally added when nonaqueous solvents were used. It is important to describe here that almost the same dependency of the fraction of formate on the dielectric constant of the solvents as that shown in Fig. 3 was obtained for the commercially available P-25 TiO₂, except for the use of propylene carbonate which gave the methanol production at P-25 TiO₂ [29]. If it is assumed that the solvent used plays a crucial role in the photoreduction of CO₂, the relative ratio of the reduction products must have the same dependency on the dielectric constant of the solvents that are shown in Fig. 3 even if other kinds of semiconductors are used as the photocatalysts. So far several papers have been published on the photoreduction of CO₂ in aqueous solutions and formate was mostly obtained as the major reduction products at Q-ZnS [18,26,27], Q-CdS [27], and SiC [30] as the photocatalysts.

5. Photoreduction of CO₂ in propylene carbonate solutions

When P-25 TiO₂ was used as a photocatalyst for reducing CO₂ in propylene carbonate solution in the presence of 2-propanol as the sacrificial electron donor, methanol was produced as the reduction product. The methanol production at much higher rates was obtained using Q-TiO2 immobilized in polyvinylpyrrolidinone gel film as the photocatalyst [31]. The photocatalyst used in that case was prepared by hydrolyzing 1 ml portion of titanium tetraisopropoxide in 50 ml of 2-propanol containing 0.6 ml of water, 0.04 ml of 1 mol dm⁻³ HCl and 0.5 wt% of polyvinylpyrrolidinone which worked as the stabilizing agent, followed by applying electrophoresis using a platinum mesh cathode [32]. The photoreduction experiments of CO₂ were carried out both by immersing the entire surfaces of the photocatalyst in the solution and by contacting one face of the photocatalyst film with CO2 and the other face with the solution. In both cases acetone was obtained as the sole oxidation product, while Ti3+, H2 and methanol

Table 4
Photoinduced reduction of CO₂ on semiconductor nanoparticle photocatalysts

Q-Sc/catalyst/(stabilizer)	Sacrificial electron donor/Solvent	Reduction products	Remarks	Reference
ZnS/(SiO ₂)	2-Propanol/water	НСООН	QE ^a =80%	[18]
ZnS/(SiO ₂)	2-Propanol/water	HCOOH	QE=23%,	[19]
ZnS	H ₂ PO ₄ , SH ⁻ /water	НСООН	QE=23%	[20]
CdS	TEA ^b /DMSO	CO, H ₂	QE=9.8%	[33]
CdS	TEA, BP ^c /DMF	Benzyl acid		[34]
TiO ₂ /(Vycor glass) ^d	Water vapor	CH₄, CH₃OH		[35]
ZnS/Cd/(HMP) ^e	2-Propanol/water	НСООН	OE=42%	[27]
CdS/Inf	TEA/DMF	HCOOH, CO	•	[36]
$TiO_2/(SiO_2)^d$	2-Propanol/water	HCOOH		[26]
	•	CH_4 , C_2H_6		
CdS/polymer	2-Propanol/ water	HCOOH>	For polymers of negative charge	[29]
. ,	•	CO	For polymers of positive charge	
TiO ₂ /(PVPD) ^g	2-Propanol	CH ₃ OH	. F, F	[31]

^a Quantum efficiency (%).

were obtained as the reduction products. The chemical stoichiometry of the photoinduced reaction seems good, since the number of holes involved in the production of acetone was equal to that involved in the reduction reactions. Since higher production rates of these were obtained when the photocatalyst film was contacted with both the solution and gaseous CO₂, the amount of CO₂ around the Q-TiO₂ photocatalysts seems to determine the overall rate of the photoinduced reaction. The methanol production from reduction of CO₂ was confirmed by labeling experiments using ¹³CO₂. Presently it is not known why the selective photoreduction of CO₂ to methanol occurs in the propylene carbonate solution.

6. Conclusion

Results obtained by using Q-Sc as the photocatalysts are collected in Table 4 which shows that the sacrificial electron donors were used in all cases. Since Q-Sc has high activities for photoreduction of CO_2 , a fairly high amount of reduction products that allowed reliable chemical analyses was obtained. From the viewpoint of CO_2 fixation, however, the use of sacri-

ficial electron donors is not recommended, and water must be used as the hole scavenger. Unfortunately we have no good technique to induce oxidation of water efficiently on semiconductor photocatalysts. Water photolysis on the semiconductor photocatalysts have not yet been successful due to difficulty in evolving oxygen from the photocatalyst surfaces. If this problem is solved, then the photoreduction of CO₂ using semiconductor photocatalysts will be easily achieved without using any sacrificial electron donors. In this sense, a breakthrough that allows the achievement of water photolysis is desired, and this subject is still most important for studies on semiconductor photocatalysis.

References

- [1] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277 (1979) 637.
- [2] B. Aurian-Blajeni, M. Halmann, J. Manassen, Solar Energy 25 (1980) 165.
- [3] M. Ulman, A.H.A. Tinnemans, A. Mackor, B. Aurian-Blajeni, M. Halmann, Int. J. Solar Energy 1 (1982) 213.
- [4] M. Ulman, B. Aurian-Blajeni, M. Halmann, Isr. J. Chem. 22 (1982) 177.

^b Triethylamine.

^c Benzophenone.

^d Immobilization in solid support.

e Hexamethaphosphate.

f The photoreduction experiments was carried out in the presence of In³⁺ in the solution.

g Polyvinylpyrrolidinone gel film.

- [5] M. Halmann, V. Katzir, E. Borgarello, J. Kiwi, Solar Energy Mater. 10 (1984) 85.
- [6] K. Adachi, K. Ohta, T. Mizuno, Solar Energy 53 (1994) 187.
- [7] K.R. Thampi, J. Kiwi, M. Garatzel, Nature 327 (1987) 506.
- [8] F. Solymosi, I. Tombacy, Catal. Lett. 27 (1994) 61.
- [9] Z. Goren, I. Willner, A.J. Nelson, A.J. Frank, J. Phys. Chem. 94 (1990) 3784.
- [10] K. Chandraskram, J.K. Thomas, Chem. Phys. Lett. 99 (1983) 7.
- [11] T.S. Dzabier, B.B. Tarasov, A.M. Uskov, Catal. Today 13 (1992) 695.
- [12] T. Mizuno, H. Tsutumi, K. Ohta, A. Saji, H. Noda, Chem. Lett. (1994) 1533.
- [13] Y. Matsumoto, M. Ohta, J. Hombo, J. Phys. Chem. 98 (1994) 2950.
- [14] T. Tennakone, A.H. Jayatissa, A. Punchihewa, J. Photochem. Photobiol. A 49 (1989) 369.
- [15] H. Kish, G. Twardzik, Chem. Ber. 124 (1991) 1161.
- [16] B.R. Eggins, J.T.S. Irvine, E.P. Murphy, J. Grimshaw, Solar Energy 45 (1990) 27.
- [17] S.M. Aliwi, I. Al-Daghsteni, J. Solar Energy Res. 7 (1989) 49.
- [18] A. Henglein, M. Gutierez, Ch. Fischer, Ber. Bunsenges. Phys. Chem. 88 (1984) 1704.
- [19] H. Inoue, T. Torimoto, T. Sakata, H. Mori, H. Yoneyama, Chem. Lett. (1990) 1483.
- [20] M. Kanemoto, T. Shiragami, C. Pac, S. Yanagida, Chem. Lett. (1990) 931.
- [21] L.E. Brus, J. Chem. Phys. 80 (1984) 4403.

- [22] P.E. Lippens, M. Lanoo, Phys. Rev. B. 39 (1988) 10935.
- [23] Y. Wang, A. Suna, W. Mahler, R. Kosowski, J. Chem. Phys. 87 (1987) 7315.
- [24] A. Henglein, Chem. Rev. 89 (1989) 1861.
- [25] F.-R.F. Fan, P. Leempael, A.J. Bard, J. Electrochem. Soc. 130 (1983) 1866.
- [26] H. Inoue, T. Mastsuyama, B-J. Liu, T. Sakata, H. Mori, H. Yoneyama, Chem. Lett. (1994) 653.
- [27] H. Inoue, H. Moriwaki, K. Maeda, S. Kuwabata, H. Yoneyama, J. Photochem. Photobiol. A 86 (1995) 191.
- [28] H. Inoue, R. Nakamura, H. Yoneyama, Chem. Lett. (1994) 1227.
- [29] B-J. Liu, T. Torimoto, H. Matsumoto, H. Yoneyama, J. Photochem. Photobiol. A 108 (1997) 187.
- [30] S. Yamamura, H. Kojima, J. Iyoda, W. Kawai, J. Electroanal. Chem. (1988) 333.
- [31] S. Kuwabata, H. Uchida, A. Ogawa, S. Hirao, H. Yoneyama, J. Chem. Soc. Chem. Commun. (1995) 829.
- [32] H. Uchida, S. Hirao, T. Torimoto, S. Kuwabata, T. Sakata, H. Mori, H. Yoneyama, Langmuir 11 (1995) 3725.
- [33] M. Kanemoto, K. Ishihara, Y. Wada, T. Sakata, H. Mori, S. Yanagida, Chem. Lett. (1992) 835.
- [34] M. Anpo, K. Chiba, J. Mol. Catal. 74 (1992) 207.
- [35] M. Kanemoto, M. Nomura, Y. Wada, T. Akano, S. Yanagida, Chem. lett. (1993) 1687.
- [36] M. Kanemoto, H. Ankyu, Y. Wada, S. Yanagida, Chem. Lett. (1992) 2113.